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Abstract
An external magnetic field, H , applied parallel to a quasi-two-dimensional carrier system
modifies quantitatively and qualitatively the density of states. We examine how this affects
primary thermodynamic properties, namely, the entropy, S, the internal and free energy, U and
F , the magnetization, M , and the magnetic susceptibility, χm, using a self-consistent numerical
approach. Although M is mainly in the opposite direction to H , the system is not linear. Hence,
surprisingly, ∂M/∂H swings between negative and positive values, i.e. a diamagnetic to
paramagnetic transition of entirely orbital origin is predicted. This phenomenon is important
compared to the ideal de Haas–van Alphen effect, i.e. the corresponding phenomenon under
perpendicular magnetic field. By augmenting temperature, the diamagnetic to paramagnetic
transition fades away. The overall behaviour of entropy is also foreseen and consistently
interpreted. While the entropy contribution to the free energy is very small at low temperatures,
entropy shows a clear dependence on the external magnetic field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of quasi-two-dimensional (2D)1 carriers under
magnetic field has a long, fruitful history. Emphasis has
been given to the configuration where the magnetic field, H ,
is applied perpendicularly to the quasi-2D system, leading
to quantization of the free in-plane motion into Landau
levels [1]. In this configuration the integer quantum Hall
effect [2] was discovered and the fractional quantum Hall
effect was observed [3] and explained in terms of quasiparticles
with fractional charge [4]. Besides varying H , oscillations
of the conductivity (the Shubnikov–de Haas effect [5]) as
well as oscillations of the magnetic susceptibility (the de
Haas–van Alphen effect) were observed. The de Haas–van
Alphen effect, involving measurements of a thermodynamic
property like the magnetization, M , directly probes the heart
of the system, i.e. the density of states (DOS). However,

1 The most popular term is ‘two-dimensional’, e.g. two-dimensional electron
gas (2DEG). Strictly speaking, ‘quasi-two-dimensional’ is more appropriate
because there is a finite extension in the third direction.

experimental evidence of the ideal de Haas–van Alphen effect
in a quasi-2D carrier system was only found recently by
Wilde et al [6] who measured the magnetization oscillations
of high mobility electrons in modulation-doped AlGaAs/GaAs
heterostructures. In the sample with the highest oscillation
amplitude they observed discontinuous jumps in M with
peak-to-peak amplitude of two effective Bohr magnetons2 per
electron, in agreement with the old Peierls prediction [7].
Numerical simulations [6] assuming no states between the
Landau levels (no ‘background’ DOS) could model these
jumps quantitatively, but measurements on samples with lower
mobility revealed a finite background DOS. Indeed in earlier
studies [8] a considerable DOS between the broadened Landau
levels was necessary to simulate the experimental results.

This paper predicts how the DOS modification—caused
by a magnetic field parallel to a quasi-2D system—amends
fundamental thermodynamic properties, namely, the entropy,
the internal and the free energy, the magnetization, and the
magnetic susceptibility. A fully self-consistent numerical

2 μ∗
B = eh̄

2m∗ , m∗ is the effective mass.
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envelope function approach is employed. Although M remains
basically in the opposite direction to H , the system is highly
nonlinear. As a result, the magnetic susceptibility oscillates
between negative and positive values. This is the first
prediction of a purely orbital diamagnetic to paramagnetic
transition. The effect, ignored by the community up to now,
is important compared to the ideal de Haas–van Alphen effect,
the analogous phenomenon under perpendicular magnetic
field. This work will hopefully also help the interpretation
of magnetization measurements under tilted H , i.e. whenever
an in-plane component of H exists. In addition, the overall
behaviour of entropy and in particular its minimum and
maximum, is consistently explained for the first time.

Basic theory is laid out in section 2. In section 3 we
discuss low-temperature results, while in section 4 we increase
temperature. In section 5 we state our conclusions.

2. Theory

When a quasi-2D system is subjected to an in-plane-or even
tilted magnetic field, the charming concept of Landau levels
must be revised, because carriers move under the competing
influence of the Lorentz force and the force due to the
quantum well (QW) confining potential. The equal-energy
surfaces [9] or equivalently the density of states [10, 11] are
qualitatively and quantitatively modified because the spatial
and the magnetic confinement compete. Generally, a proper
treatment involves self-consistent computation [9, 11, 12] of
the energy dispersion, Ei,σ (kx). i is the subband index,
σ denotes the spin, and kx is the in-plane wavevector
perpendicular to the external in-plane magnetic field (applied
along y), H . The envelope functions along the ‘growth’
z-axis depend on kx i.e. ψi,σ,kx ,ky (r) ∝ ζi,σ,kx (z)e

ikx xeiky y .
The consequences of this modification were initially realized
in transport [13] experiments. This change influences
the character of plasmons [14]. The N -type kink was
predicted [15] and recently verified in photoluminescence
experiments [16]. The impact of the DOS modification on the
properties of dilute-magnetic-semiconductor single QWs was
studied recently [12, 17]. A Monte Carlo study of transport
properties appeared [18], too. Thus, it seems that the parallel
or tilted configuration offers new avenues to explore. A
compact DOS formula for a quasi-2D system under in-plane
H , valid for any kind of interplay between spatial and magnetic
confinement, exists [12]:

ρ(E) = A
√

2m∗

4π2h̄

∑

i,σ

∫ +∞

−∞
dkx

	(E − Ei,σ (kx))√E − Ei,σ (kx)
. (1)

The QWs are along the z-axis. H is applied along the y-axis. 	
is the step function, A is the xy-area of the structure. Generally
the spin-dependent xz-plane eigenenergies, Ei,σ (kx), must
be self-consistently calculated [9, 11, 12, 15, 17]. The kx

dependence in equation (1) often increases the numerical cost
by a factor of 102–103; hence it is sometimes overlooked, but
this is only justified for narrow single QWs or for H → 0.
With the existing computers, such a compromise is not needed.
For H → 0, equation (1) converges to the staircase form with

the famous step 1
2

m∗ A
π h̄2 for each spin. In the opposite asymptotic

limit of equation (1), at a simple saddle point, the DOS diverges
logarithmically [10]. The DOS modification drastically affects
the physical properties [9–17]; models which ignore it can
only be applied to narrow single QWs or for H → 0. For
completeness, we note that in equation (1) disorder is ignored;
with the progress of epitaxial techniques, it is fairly small in
well-prepared III–V structures. Disorder will induce some
broadening of the subbands.

The population, N , the internal energy, U , the
entropy [19], S, and the free energy, F , are given by:

N =
∫ +∞

−∞
dE ρ(E) f0(E), (2)

U =
∫ +∞

−∞
dEρ(E) f0(E)E, (3)

S = −kB

∫ +∞

−∞
dEρ(E) f0(E) ln[ f0(E)], (4)

F = U − T S. (5)

T is the temperature. f0(E) is the Fermi–Dirac distribution
function. ρ(E) ∝ A, thus N , U , S as well as F are proportional
to A. However, the magnetization,

M = − 1

V

(
∂F

∂B

)

N,T

, (6)

where V is the structure’s volume, is independent of A. To
have units in Tesla, we symbolize B = μ0 H , μ0 as being
the magnetic permeability of free space. To calculate M we
have to keep T as well as N constant e.g. assuming all dopants
are ionized. In section 3, T = 4.2 K, while in section 4,
the temperature dependence of the thermodynamic quantities
is examined. Ni are the sheet subband concentrations and
Ns = N/A is the sheet concentration. We use Ei(kx) for the
subband energy dispersion, i.e. in the present work we ignore
spin-splitting which has been treated in detail elsewhere [17].
For H = 0, the symmetric–asymmetric gap
S AS = E1(kx =
0)− E0(kx = 0).

3. Low-temperature results and discussion

The phenomena described below apply to all quasi-2D sys-
tems. As a prototype system, we choose GaAs/(Al,Ga)As dou-
ble QWs, a bilayer system with well-defined 
S AS and well-
known material parameters. Magnetization measurements un-
der perpendicular H of a similar system can be found else-
where [20]. To facilitate the reader, we provide in figure 1 the
self-consistent potential energy profiles, for H = 0, of the var-
ious double QWs employed here. These include the Coulomb
term obtained by the solution of the ‘Poisson’ equation, the
term due to the discontinuity of the conduction band minimum
as well as the exchange and correlation term [11]. These terms
are also included when H is switched on. Two (left and right)
50 nm spacers separate the δ-doped layers from the double
QW. The total double QW width is 22.7 nm, including the in-
ternal barrier of 2.5 nm. Augmenting the δ-doping, we vary

2
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Figure 1. Quantum well potential energy profiles for H = 0.
(α′) Ns = 1.85 × 1011 cm−2, 
S AS = 4.24 meV.
(β ′)Ns = 3.70 × 1011 cm−2, 
S AS = 4.01 meV.
(γ ′)Ns = 5.55 × 1011 cm−2, 
S AS = 3.79 meV. T = 4.2 K.

Figure 2. The sheet subband concentrations N0, N1 and the sheet
concentration Ns as functions of the external in-plane magnetic field,
μ0 H , for cases α′ (solid lines), β ′ (dashed lines), γ ′ (dash–dotted
lines). T = 4.2 K.

Ni , Ns, and
S AS, distinguishing three cases (α′, β ′, γ ′) with
Ns(α

′):Ns(β
′):Ns(γ

′) = 1:2:3. Figure 2 depicts N0, N1 and Ns

as functions of μ0 H . The depopulation of E1 induced by the
DOS modification occurs approximately at 6, 10, and 12.5 T,
respectively.

Figure 3 depicts U , −T S, and F , as functions of μ0 H .
For simplicity we take A = 1 m2. At T = 4.2 K, |F | ≈
|U | 	 |−T S|. Since N is kept constant in each case, we
expect that |U | will decrease whenever H induces ‘flattening’
of the occupied subbands i.e. expansion of the occupied parts
to higher |kx |, because this leads to occupied energies with
smaller |E|. The gradual increase of |F | from (α′) to (β ′) and
(γ ′) mirrors the population increase. To facilitate the reader,
we provide in figure 4 enlargements of the energy dispersion
of case (α′) for characteristic values of μ0 H .

Figure 5 depicts the entropy S as a function of μ0 H . From
equations (2) and (4), since for each case N is constant, S is
sensitive to the changes of ln[ f0(E)]. At T = 4.2 K, these

Figure 3. The internal energy, U , the product −T S, and the free
energy, F , as functions of the external in-plane magnetic field, μ0 H ,
for all cases (α′, β ′, γ ′). On this scale, F ≈ U , −T S is negligible.
T = 4.2 K.

(a)

(b)

Figure 4. Enlarged views of the energy dispersion, Ei(kx ) (i = 0, 1),
for characteristic values of μ0 H , for case (α′). Here the Fermi
energy, EF, is identified with zero. T = 4.2 K.

changes only occur in a short region around the Fermi energy,
EF. In other words, S reads the modification of the energy
dispersion around EF. For the case (α′), for μ0 H = 0, the

3
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Figure 5. The entropy, S, as a function of μ0 H , for each one of the
cases (α′, β ′, γ ′). T = 4.2 K.

bottom of E1(kx) is pretty close to EF. From 0 to 6 T, S
continuously falls due to the continuous depopulation process
of E1(kx). The minimum of S occurs at 6 T because there
the gradual DOS modification completely depopulates the first
excited subband, cf figures 2 and 4. In other words, the
‘cohesion’ of the system reaches its maximum at 6 T. From 6 to
10.75 T, S continuously increases because around EF, E0(kx)

in the range |kx | ≈ 0 moves upward and finally the populated
E0(kx) is divided into two parts, cf figure 4. The maximum of
S occurs at 10.75 T because there E0(kx) splits completely into
two occupied parts, around kx = 0 the ground state subband
ceases to be occupied. Thus, the cohesion of the occupied
E0(kx) is lost around 10.75 T. From 11 to 20 T, S does not
change much, because the main effect of increasing μ0 H is to
move the two E0(kx) minima continuously apart, cf figure 4.
The behaviour of S, in cases (β ′, γ ′) can be readily explained
likewise. As one could maybe imagine, increasing the system’s
magnitude, the minimum of entropy, Smin, is increasing: at
6 T with Smin = 2.2 × 1010 eV K−1, at 10 T with Smin =
2.4 × 1010 eV K−1, at 12.5 T with Smin = 2.5 × 1010 eV K−1.

Figure 6 shows the magnetization M as a function ofμ0 H .
We observe that the DOS modification induces an oscillation
of M ; it is between ≈−3 and ≈0.5 A m−1 for case (α′),
between ≈−7 and ≈2 A m−1 for case (β ′), and between ≈−9
and ≈2 A m−1 for case (γ ′). The reader may observe that
the magnetic susceptibility, χm = ∂M/∂H , swings between
negative and positive values, thus figure 6 shows a totally
orbital diamagnetic to paramagnetic transition. This is the first
prediction of oscillations of the magnetic susceptibility under
in-plane magnetic field. The new effect is important compared
to the well-known de Haas–van Alphen effect (oscillations
of the magnetic susceptibility under perpendicular magnetic
field). For example in case (γ ′), the fluctuation of M of the
order of 10 A m−1 is translated to approximately 1

5 of the ideal
de Haas–van Alphen effect i.e. the magnetization step of two
effective Bohr magnetons per electron in the perpendicular
configuration [6, 7]. We hope that the new finding will
be verified when magnetization experiments under purely in-
plane magnetic field are carried out. The predicted effect

Figure 6. The magnetization, M , as a function of μ0 H , for each one
of the cases (α′, β ′, γ ′). T = 4.2 K.

will hopefully also help the interpretation of magnetization
measurements under tilted H , i.e., whenever an in-plane
component of H exists.

The self-consistent approach followed in the present
manuscript can be applied not only to double quantum wells
but also to narrow to wide single quantum wells, and for a wide
range of magnetic fields, i.e. for any type of interplay between
spatial and magnetic confinement. Hu and MacDonald [21]
studied the magnetization of double quantum wells subject to
(more general) tilted magnetic field. In this comprehensive
paper the authors focused on the effect of the perpendicular
component of the magnetic field. As far as the in-plane
component of the magnetic field is concerned, they (i) took
a narrow well approximation for each 2D layer and used a
tight binding approximation so that the single-particle problem
could be characterized by the interlayer distance d and the
hopping integral t0. In their approach, the dispersion relations
for electrons in the separate layers remain quadratic but the
minima are shifted along the ky axis (this would be the kx axis
with the current choice of coordinates) in proportion to the in-
plane magnetic field. This allowed them to write an analytical
expression for the eigenenergies (equation (2.4) [21]). (ii) On
the other hand, when they applied a tilted magnetic field, they
kept the in-plane component in the range zero to 3 T. Points
(i–ii) mean that in their case—as far as the in-plane magnetic
field is concerned—the spatial confinement dominates. On the
contrary, the self-consistent approach followed in the present
manuscript holds for any type of interplay between spatial
and magnetic confinement. Indeed, in the current manuscript,
the oscillations of the magnetization occur for higher values
of the magnetic field, i.e. when the magnetic confinement
becomes a competitive player in this game. Accordingly, the
energy dispersion is not parabolic any more or equivalently the
density of states deviates from the ideal step-like form both
quantitatively and qualitatively (equation (1)). This way, in
the general case, the energy eigenvalues cannot be expressed
analytically but have to be calculated self-consistently at the
expense of computer time [11, 22].

4
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Figure 7. The sheet subband concentrations N0, N1 as functions of
μ0 H , for T = 4.2, 77, and 300 K (case α′).

4. Augmenting temperature

Let us examine the impact of increasing temperature. As an
example, let us take case α′. Figure 7 presents the sheet
subband concentrations N0 and N1 as functions of μ0 H in
steps of 1 T, for three characteristic temperatures, namely,
4.2, 77, and 300 K. As one could possibly imagine, the
depopulation of the first excited subband, induced by the
DOS modification caused by increasing μ0 H , becomes more
difficult at higher temperatures.

Increasing T , the evolution of the internal energy U , the
entropy S, the product −T S, and the free energy F as functions
of μ0 H in steps of 1 T, is summed up in figure 8. Not only
U300 K > U77 K > U4.2 K, but also S300 K > S77 K > S4.2 K.
We observe that at higher T , the contributions of U and of
−T S to F counterbalance in such a way that the oscillation of
F as a function of μ0 H fades away. Hence, with increasing T ,
the diamagnetic to paramagnetic transition dies out.

5. Conclusion

This paper examined principal thermodynamic quantities of
quasi-2D carriers under parallel magnetic field. Magnetization
measurements are a promising tool for the DOS investigation.
We found that the DOS modification caused by the in-
plane magnetic field generates a considerable effect in the
magnetization of quasi-2D carriers which has been ignored
by the community up to now. The magnetic susceptibility
swings from negative to positive values, i.e. we have proved
that an entirely orbital diamagnetic to paramagnetic transition
exists. We conjecture that the in-plane component of a tilted
magnetic field will bring about similar effects, hence care
must be taken with the interpretation of such magnetization
measurements. Many-body effects or the ‘background’ DOS
may play their role, but we must not forget this major
orbital effect stemming from essential quantum mechanics,
i.e. from the kx -dependence of the z-axis envelope functions.
Additionally, it has been explained why the diamagnetic to
paramagnetic transition dies out at higher temperatures. The

Figure 8. The internal energy U , the entropy S, the product −T S
and the free energy F as functions of μ0 H , for T = 4.2, 77, and
300 K (case α′).

entropy was also calculated and interpreted, in particular the
occurrences of its minimum and maximum were predicted. It
was demonstrated that although the entropy contribution to the

5
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free energy is very small at low temperatures, entropy shows
a clear dependence on the energy dispersion modification
induced by the external magnetic field.
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